Skip to main content

Shigella-Controlled Human Infection Models: Current and Future Perspectives

  • Chapter
  • First Online:
Current Topics in Microbiology and Immunology

Abstract

Shigella-controlled human infection models (CHIMs) are an invaluable tool utilized by the vaccine community to combat one of the leading global causes of infectious diarrhea, which affects infants, children and adults regardless of socioeconomic status. The impact of shigellosis disproportionately affects children in low- and middle-income countries (LMICs) resulting in cognitive and physical stunting, perpetuating a cycle that must be halted. Shigella-CHIMs not only facilitate the early evaluation of enteric countermeasures and up-selection of the most promising products but also provide insight into mechanisms of infection and immunity that are not possible utilizing animal models or in vitro systems. The greater understanding of shigellosis obtained in CHIMs builds and empowers the development of new generation solutions to global health issues which are unattainable in the conventional laboratory and clinical settings. Therefore, refining, mining and expansion of safe and reproducible infection models hold the potential to create effective means to end diarrheal disease and associated co-morbidities associated with Shigella infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AMR:

Antimicrobial resistance

AR:

Attack rate

CCHMC:

Cincinnati Children’s Hospital Medical Center

CDC:

US Center for Disease Control and prevention

CFU:

Colony forming units

CHIM:

Controlled human infection model

CoP:

Correlates of protection

CRP:

C-reactive protein

EE:

Environmental enteropathy

EMA:

European Medicines Agency

ETEC:

Enterotoxigenic Escherichia coli

FDA:

US Food and Drug Administration

G4C:

Group 4 capsule

GMP:

Good manufacturing practices

HBD-1:

Human β-defensin-1

HICs:

High-income countries

IABS:

International Alliance for Biological Standardisation

Ipa:

Invasion plasmid antigens

LMICs:

Low- and middle-income countries

LPS:

Lipopolysaccharide

mAb:

Monoclonal antibody

MPO:

Myeloperoxidase

OAg:

O-antigen

SAGE:

Strategic Advisory Group of Experts

T3SS:

Type-III secretion system

T6SS:

Type-VI secretion system

TCV:

Typhoid conjugate vaccine

US:

United States

WHO:

World Health Organization

References

  • Ahmed F, Clemens JD, Rao MR, Ansaruzzaman M, Haque E (1997) Epidemiology of shigellosis among children exposed to cases of Shigella dysentery: a multivariate assessment. Am J Trop Med Hyg 56(3):258–264. https://doi.org/10.4269/ajtmh.1997.56.258

    Article  Google Scholar 

  • Alter G, Barouch D (2018) Immune correlate-guided HIV vaccine design. Cell Host Microbe 24(1):25–33. https://doi.org/10.1016/j.chom.2018.06.012

    Article  Google Scholar 

  • AMS (2005) Microbial challenge studies of human volunteers, a guidance document. Academy of Medical Sciences

    Google Scholar 

  • Anderson MC, Vonaesch P, Saffarian A, Marteyn BS, Sansonetti PJ (2017) Shigella sonnei encodes a functional T6SS used for interbacterial competition and Niche occupancy. Cell Host Microbe 21(6):769–776 e763. https://doi.org/10.1016/j.chom.2017.05.004

  • Anderson JDt, Bagamian KH, Muhib F, Amaya MP, Laytner LA, Wierzba T, Rheingans R (2019) Burden of enterotoxigenic Escherichia coli and Shigella non-fatal diarrhoeal infections in 79 low-income and lower middle-income countries: a modelling analysis. Lancet Glob Health 7 (3):e321–e330. https://doi.org/10.1016/S2214-109X(18)30483-2

  • Anderson JDt, Bagamian KH, Muhib F, Baral R, Laytner LA, Amaya M, Wierzba T, Rheingans R (2019) Potential impact and cost-effectiveness of future ETEC and Shigella vaccines in 79 low- and lower middle-income countries. Vaccine X(2):100024. https://doi.org/10.1016/j.jvacx.2019.100024

  • Arevalillo JM, Sztein MB, Kotloff KL, Levine MM, Simon JK (2017) Identification of immune correlates of protection in Shigella infection by application of machine learning. J Biomed Inform 74:1–9. https://doi.org/10.1016/j.jbi.2017.08.005

    Article  Google Scholar 

  • Arndt MB, Cantera JL, Mercer LD, Kalnoky M, White HN, Bizilj G, Boyle DS, de Hostos EL, Choy RKM (2020) Validation of the micronutrient and environmental enteric dysfunction assessment tool and evaluation of biomarker risk factors for growth faltering and vaccine failure in young Malian children. PLoS Negl Trop Dis 14(9):e0008711. https://doi.org/10.1371/journal.pntd.0008711

    Article  Google Scholar 

  • Ashkenazi S, Passwell JH, Harlev E, Miron D, Dagan R, Farzan N, Ramon R, Majadly F, Bryla DA, Karpas AB, Robbins JB, Schneerson R (1999) Safety and immunogenicity of Shigella sonnei and Shigella flexneri 2a O-specific polysaccharide conjugates in children. J Infect Dis 179(6):1565–1568. https://doi.org/10.1086/314759

    Article  Google Scholar 

  • Baay MFD, Richie TL, Neels P, Session chairs at the second Human Challenge Trials m (2019) Human challenge trials in vaccine development, Rockville, MD, USA, 28–30 Sept 2017. Biologicals 61:85–94. https://doi.org/10.1016/j.biologicals.2018.02.002

  • Bardhan P, Faruque AS, Naheed A, Sack DA (2010) Decrease in shigellosis-related deaths without Shigella spp.-specific interventions, Asia. Emerg Infect Dis 16(11):1718–1723. https://doi.org/10.3201/eid1611.090934

  • Barry EM, Levine MM (2019) A tale of two bacterial enteropathogens and one multivalent vaccine. Cell Microbiol 21(11):e13067. https://doi.org/10.1111/cmi.13067

    Article  Google Scholar 

  • Barry E, Cassels F, Riddle M, Walker R, Wierzba T (2019) Vaccines against Shigella and enterotoxigenic Escherichia coli: a summary of the 2018 VASE Conference. Vaccine 37(34):4768–4774. https://doi.org/10.1016/j.vaccine.2019.02.070

    Article  Google Scholar 

  • Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141. https://doi.org/10.1016/j.cell.2014.03.011

    Article  Google Scholar 

  • Bernasconi OJ, Dona V, Tinguely R, Endimiani A (2018) In vitro activity of 3 commercial bacteriophage cocktails against Salmonella and Shigella spp Isolates of Human Origin. Pathog Immun 3(1):72–81. https://doi.org/10.20411/pai.v3i1.234

    Article  Google Scholar 

  • Black RE, Levine MM, Clements ML, Losonsky G, Herrington D, Berman S, Formal SB (1987) Prevention of shigellosis by a Salmonella typhi-Shigella sonnei bivalent vaccine. J Infect Dis 155(6):1260–1265. https://doi.org/10.1093/infdis/155.6.1260

    Article  Google Scholar 

  • Bodhidatta L, Pitisuttithum P, Chamnanchanant S, Chang KT, Islam D, Bussaratid V, Venkatesan MM, Hale TL, Mason CJ (2012) Establishment of a Shigella sonnei human challenge model in Thailand. Vaccine 30(49):7040–7045. https://doi.org/10.1016/j.vaccine.2012.09.061

    Article  Google Scholar 

  • Burki T (2018) Typhoid conjugate vaccine gets WHO prequalification. Lancet Infect Dis 18(3):258. https://doi.org/10.1016/S1473-3099(18)30087-2

    Article  Google Scholar 

  • Caboni M, Pedron T, Rossi O, Goulding D, Pickard D, Citiulo F, MacLennan CA, Dougan G, Thomson NR, Saul A, Sansonetti PJ, Gerke C (2015) An O antigen capsule modulates bacterial pathogenesis in Shigella sonnei. PLoS Pathog 11(3):e1004749. https://doi.org/10.1371/journal.ppat.1004749

    Article  Google Scholar 

  • Carlin NI, Lindberg AA, Bock K, Bundle DR (1984) The Shigella flexneri O-antigenic polysaccharide chain. Nature of the biological repeating unit. Eur J Biochem 139(1):189–194. https://doi.org/10.1111/j.1432-1033.1984.tb07993.x

  • Cash RA, Music SI, Libonati JP, Snyder MJ, Wenzel RP, Hornick RB (1974) Response of man to infection with Vibrio cholerae. I. Clinical, serologic, and bacteriologic responses to a known inoculum. J Infect Dis 129(1):45–52. https://doi.org/10.1093/infdis/129.1.45

  • CDC (2019) Antibiotic resistance threats in the United States. https://doi.org/10.15620/cdc:82532

  • Chakraborty S, Randall A, Vickers TJ, Molina D, Harro CD, DeNearing B, Brubaker J, Sack DA, Bourgeois AL, Felgner PL, Liang X, Mani S, Wenzel H, Townsend RR, Gilmore PE, Darsley MJ, Rasko DA, Fleckenstein JM (2019) Interrogation of a live-attenuated enterotoxigenic Escherichia coli vaccine highlights features unique to wild-type infection. NPJ Vaccines 4:37. https://doi.org/10.1038/s41541-019-0131-7

    Article  Google Scholar 

  • Chanin RB, Nickerson KP, Llanos-Chea A, Sistrunk JR, Rasko DA, Kumar DKV, de la Parra J, Auclair JR, Ding J, Li K, Dogiparthi SK, Kusber BJD, Faherty CS (2019) Shigella flexneri adherence factor expression in in vivo-like conditions. mSphere 4(6). https://doi.org/10.1128/mSphere.00751-19

  • Chilengi R, Simuyandi M, Chibuye M, Chirwa M, Sukwa N, Laban N, Chisenga C, Silwamba S, Grassly N, Bosomprah S (2020) A pilot study on use of live attenuated rotavirus vaccine (Rotarix) as an infection challenge model. Vaccine 38(46):7357–7362. https://doi.org/10.1016/j.vaccine.2020.09.023

    Article  Google Scholar 

  • Chisenga CC, Bosomprah S, Simuyandi M, Mwila-Kazimbaya K, Chilyabanyama ON, Laban NM, Bialik A, Asato V, Meron-Sudai S, Frankel G, Cohen D, Chilengi R (2021) Shigella-specific antibodies in the first year of life among Zambian infants: a longitudinal cohort study. PLoS ONE 16(5):e0252222. https://doi.org/10.1371/journal.pone.0252222

    Article  Google Scholar 

  • Clarkson KA, Talaat KR, Alaimo C, Martin P, Bourgeois AL, Dreyer A, Porter CK, Chakraborty S, Brubaker J, Elwood D, Frolich R, DeNearing B, Weerts HP, Feijoo B, Halpern J, Sack D, Riddle MS, Fonck VG, Kaminski RW (2021a) Immune response characterization in a human challenge study with a Shigella flexneri 2a bioconjugate vaccine. EBioMedicine 66:103308. https://doi.org/10.1016/j.ebiom.2021.103308

    Article  Google Scholar 

  • Clarkson KA, Frenck RW, Jr., Dickey M, Suvarnapunya AE, Chandrasekaran L, Weerts HP, Heaney CD, McNeal M, Detizio K, Parker S, Hoeper A, Bourgeois AL, Porter CK, Venkatesan MM, Kaminski RW (2020) Immune response characterization after controlled infection with lyophilized Shigella sonnei 53G. mSphere 5(5). https://doi.org/10.1128/mSphere.00988-19

  • Clarkson KA PC, Talaat KR, Frenck RW, Alaimo C, Martin P, Bourgeois AL, Kaminski RW (2021) Shigella-specific immune profiles induced after parenteral immunization or oral challenge with either S. flexneri 2a or S. sonnei. mSphere 6(4):e00122–00121. https://doi.org/10.1128/mSphere.00122-21

  • Cohen D, Green MS, Block C, Rouach T, Ofek I (1988) Serum antibodies to lipopolysaccharide and natural immunity to shigellosis in an Israeli military population. J Infect Dis 157(5):1068–1071. https://doi.org/10.1093/infdis/157.5.1068

    Article  Google Scholar 

  • Cohen D, Block C, Green MS, Lowell G, Ofek I (1989) Immunoglobulin M, A, and G antibody response to lipopolysaccharide O antigen in symptomatic and asymptomatic Shigella infections. J Clin Microbiol 27(1):162–167. https://doi.org/10.1128/jcm.27.1.162-167.1989

    Article  Google Scholar 

  • Cohen D, Green MS, Block C, Slepon R, Ofek I (1991) Prospective study of the association between serum antibodies to lipopolysaccharide O antigen and the attack rate of shigellosis. J Clin Microbiol 29(2):386–389. https://doi.org/10.1128/jcm.29.2.386-389.1991

    Article  Google Scholar 

  • Cohen D, Green MS, Block C, Slepon R, Lerman Y (1992) Natural immunity to shigellosis in two groups with different previous risks of exposure to Shigella is only partly expressed by serum antibodies to lipopolysaccharide. J Infect Dis 165(4):785–787. https://doi.org/10.1093/infdis/165.4.785

    Article  Google Scholar 

  • Cohen D, Ashkenazi S, Green M, Lerman Y, Slepon R, Robin G, Orr N, Taylor DN, Sadoff JC, Chu C, Shiloach J, Schneerson R, Robbins JB (1996) Safety and immunogenicity of investigational Shigella conjugate vaccines in Israeli volunteers. Infect Immun 64(10):4074–4077. https://doi.org/10.1128/iai.64.10.4074-4077.1996

    Article  Google Scholar 

  • Cohen D, Meron-Sudai S, Bialik A, Asato V, Goren S, Ariel-Cohen O, Reizis A, Hochberg A, Ashkenazi S (2019) Serum IgG antibodies to Shigella lipopolysaccharide antigens—a correlate of protection against shigellosis. Hum Vaccin Immunother 15(6):1401–1408. https://doi.org/10.1080/21645515.2019.1606971

    Article  Google Scholar 

  • Coster TS, Hoge CW, VanDeVerg LL, Hartman AB, Oaks EV, Venkatesan MM, Cohen D, Robin G, Fontaine-Thompson A, Sansonetti PJ, Hale TL (1999) Vaccination against shigellosis with attenuated Shigella flexneri 2a strain SC602. Infect Immun 67(7):3437–3443. https://doi.org/10.1128/IAI.67.7.3437-3443.1999

    Article  Google Scholar 

  • Crofts AA, Poly FM, Ewing CP, Kuroiwa JM, Rimmer JE, Harro C, Sack D, Talaat KR, Porter CK, Gutierrez RL, DeNearing B, Brubaker J, Laird RM, Maue AC, Jaep K, Alcala A, Tribble DR, Riddle MS, Ramakrishnan A, McCoy AJ, Davies BW, Guerry P, Trent MS (2018b) Campylobacter jejuni transcriptional and genetic adaptation during human infection. Nat Microbiol 3(4):494–502. https://doi.org/10.1038/s41564-018-0133-7

    Article  Google Scholar 

  • Crofts AA, Giovanetti SM, Rubin EJ, Poly FM, Gutierrez RL, Talaat KR, Porter CK, Riddle MS, DeNearing B, Brubaker J, Maciel M, Jr., Alcala AN, Chakraborty S, Prouty MG, Savarino SJ, Davies BW, Trent MS (2018) Enterotoxigenic E. coli virulence gene regulation in human infections. Proc Natl Acad Sci U S A 115(38):E8968–E8976. https://doi.org/10.1073/pnas.1808982115

  • Dahora LC, Jin C, Spreng RL, Feely F, Mathura R, Seaton KE, Zhang L, Hill J, Jones E, Alam SM, Dennison SM, Pollard AJ, Tomaras GD (2019) IgA and IgG1 specific to Vi polysaccharide of Salmonella Typhi correlate with protection status in a typhoid fever controlled human infection model. Front Immunol 10:2582. https://doi.org/10.3389/fimmu.2019.02582

    Article  Google Scholar 

  • Darton TC, Jones C, Blohmke CJ, Waddington CS, Zhou L, Peters A, Haworth K, Sie R, Green CA, Jeppesen CA, Moore M, Thompson BA, John T, Kingsley RA, Yu LM, Voysey M, Hindle Z, Lockhart S, Sztein MB, Dougan G, Angus B, Levine MM, Pollard AJ (2016) Using a human challenge model of infection to measure vaccine efficacy: a randomised, controlled trial comparing the typhoid vaccines M01ZH09 with placebo and Ty21a. PLoS Negl Trop Dis 10(8):e0004926. https://doi.org/10.1371/journal.pntd.0004926

    Article  Google Scholar 

  • Davis CL, Wahid R, Toapanta FR, Simon JK, Sztein MB, Levy D (2013) Applying mathematical tools to accelerate vaccine development: modeling Shigella immune dynamics. PLoS ONE 8(4):e59465. https://doi.org/10.1371/journal.pone.0059465

    Article  Google Scholar 

  • Dobinson HC, Gibani MM, Jones C, Thomaides-Brears HB, Voysey M, Darton TC, Waddington CS, Campbell D, Milligan I, Zhou L, Shrestha S, Kerridge SA, Peters A, Stevens Z, Podda A, Martin LB, D’Alessio F, Thanh DP, Basnyat B, Baker S, Angus B, Levine MM, Blohmke CJ, Pollard AJ (2017) Evaluation of the clinical and microbiological response to Salmonella paratyphi A infection in the first paratyphoid human challenge model. Clin Infect Dis 64(8):1066–1073. https://doi.org/10.1093/cid/cix042

    Article  Google Scholar 

  • Donowitz JR, Cook H, Alam M, Tofail F, Kabir M, Colgate ER, Carmolli MP, Kirkpatrick BD, Nelson CA, Ma JZ, Haque R, Petri WA Jr (2018) Role of maternal health and infant inflammation in nutritional and neurodevelopmental outcomes of two-year-old Bangladeshi children. PLoS Negl Trop Dis 12(5):e0006363. https://doi.org/10.1371/journal.pntd.0006363

    Article  Google Scholar 

  • DuPont HL, Hornick RB, Dawkins AT, Snyder MJ, Formal SB (1969) The response of man to virulent Shigella flexneri 2a. J Infect Dis 119(3):296–299. https://doi.org/10.1093/infdis/119.3.296

    Article  Google Scholar 

  • DuPont HL, Levine MM, Hornick RB, Formal SB (1989) Inoculum size in shigellosis and implications for expected mode of transmission. J Infect Dis 159(6):1126–1128. https://doi.org/10.1093/infdis/159.6.1126

    Article  Google Scholar 

  • DuPont HL, Hornick RB, Snyder MJ, Libonati JP, Formal SB, Gangarosa EJ (1972) Immunity in shigellosis. I. Response of man to attenuated strains of Shigella. J Infect Dis 125(1):5–11. https://doi.org/10.1093/infdis/125.1.5

  • DuPont HL, Hornick RB, Snyder MJ, Libonati JP, Formal SB, Gangarosa EJ (1972) Immunity in shigellosis. II. Protection induced by oral live vaccine or primary infection. J Infect Dis 125(1):12–16

    Google Scholar 

  • Durbin ABA, McKenzie R, Moulton L, Mallett C, Harrington J, Linden J, Lowell G, Fries L (2001) Intranasal immunization with proteosome-Shigella flexneri 2a LPS vaccine: factors associated with protection in a volunteer challenge model. Clin Infect Dis 33:1093

    Google Scholar 

  • Elliott AM, Roestenberg M, Wajja A, Opio C, Angumya F, Adriko M, Egesa M, Gitome S, Mfutso-Bengo J, Bejon P, Kapulu M, Seager Z, Lutalo T, Nazziwa WB, Muwumuza A, Yazdanbakhsh M, Kaleebu P, Kabatereine N, Tukahebwa E (2018) Ethical and scientific considerations on the establishment of a controlled human infection model for schistosomiasis in Uganda: report of a stakeholders’ meeting held in Entebbe, Uganda. AAS Open Res 1:2. https://doi.org/10.12688/aasopenres.12841.2

    Article  Google Scholar 

  • EMA (2018) Guideline on clinical evaluation of vaccines (draft). 26 Apr 2018 edn. European Medicines Agency Committee on Human Medicinal Products (CHMP)

    Google Scholar 

  • Farzam N, Ramon-Saraf R, Banet-Levi Y, Lerner-Geva L, Ashkenazi S, Kubler-Kielb J, Vinogradov E, Robbins JB, Schneerson R (2017) Vaccination with Shigella flexneri 2a conjugate induces type 2a and cross-reactive type 6 antibodies in humans but not in mice. Vaccine 35(37):4990–4996. https://doi.org/10.1016/j.vaccine.2017.07.070

    Article  Google Scholar 

  • FDA (2011) Guidance for industry: general principles for the development of vaccines to protect against global infectious diseases (trans: Food and Drug Administration CfBEaR). US Department of Health and Human Services

    Google Scholar 

  • Fedorov V, Mannino F, Zhang R (2009) Consequences of dichotomization. Pharm Stat 8(1):50–61. https://doi.org/10.1002/pst.331

    Article  Google Scholar 

  • Ferreccio C, Prado V, Ojeda A, Cayyazo M, Abrego P, Guers L, Levine MM (1991) Epidemiologic patterns of acute diarrhea and endemic Shigella infections in children in a poor periurban setting in Santiago, Chile. Am J Epidemiol 134(6):614–627. https://doi.org/10.1093/oxfordjournals.aje.a116134

    Article  Google Scholar 

  • Flores J, Okhuysen PC (2009) Genetics of susceptibility to infection with enteric pathogens. Curr Opin Infect Dis 22(5):471–476. https://doi.org/10.1097/QCO.0b013e3283304eb6

    Article  Google Scholar 

  • Formal SB, Labrec EH, Palmer A, Falkow S (1965) Protection of monkeys against experimental shigellosis with attenuated vaccines. J Bacteriol 90(1):63–68. https://doi.org/10.1128/jb.90.1.63-68.1965

    Article  Google Scholar 

  • Formal SB, Hale TL, Kapfer C, Cogan JP, Snoy PJ, Chung R, Wingfield ME, Elisberg BL, Baron LS (1984) Oral vaccination of monkeys with an invasive Escherichia coli K-12 hybrid expressing Shigella flexneri 2a somatic antigen. Infect Immun 46(2):465–469. https://doi.org/10.1128/iai.46.2.465-469.1984

    Article  Google Scholar 

  • Formal SB, Oaks EV, Olsen RE, Wingfield-Eggleston M, Snoy PJ, Cogan JP (1991) Effect of prior infection with virulent Shigella flexneri 2a on the resistance of monkeys to subsequent infection with Shigella sonnei. J Infect Dis 164(3):533–537. https://doi.org/10.1093/infdis/164.3.533

    Article  Google Scholar 

  • Foulke-Abel J, Yu H, Sunuwar L, Lin R, Fleckenstein JM, Kaper JB, Donowitz M (2020) Phosphodiesterase 5 (PDE5) restricts intracellular cGMP accumulation during enterotoxigenic Escherichia coli infection. Gut Microbes 12(1):1752125. https://doi.org/10.1080/19490976.2020.1752125

    Article  Google Scholar 

  • Frenck R, Conti V, Ferruzzi P, Ndiaye A, Parker S, McNeal M, Dickey M, Granada J-P, Cilio G, De Ryck I, Necchi F, Suvarnapunya A, Rossi O, Acquaviva A, Chandrasekaran L, Clarkson K, Auerbach J, Marchetti E, Kaminski R, Micoli F, Rappuoli R, Saul A, Martin L, Podda A (2021) Efficacy, safety, and immunogenicity of the Shigella sonnei 1790GAHB GMMA candidate vaccine: results from phase 2b randomized, placebo-controlled challenge study in adults. EClinicalMedicine 39:101076. https://doi.org/10.1016/j.eclinm.2021.101076

    Article  Google Scholar 

  • Frenck RW, Jr., Dickey M, Suvarnapunya AE, Chandrasekaran L, Kaminski RW, Clarkson KA, McNeal M, Lynen A, Parker S, Hoeper A, Mani S, Fix A, Maier N, Venkatesan MM, Porter CK (2020) Establishment of a controlled human infection model with a lyophilized strain of Shigella sonnei 53G. mSphere 5(5). https://doi.org/10.1128/mSphere.00416-20

  • GBD 2016 Diarrhoeal Disease Collaborators (2018) Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the global burden of disease study 2016. Lancet Infect Dis 18(11):1211–1228. https://doi.org/10.1016/S1473-3099(18)30362-1

  • Gibani MM, Jin C, Shrestha S, Moore M, Norman L, Voysey M, Jones E, Blackwell L, Thomaides-Brears H, Hill J, Blohmke CJ, Dobinson HC, Baker P, Jones C, Campbell D, Mujadidi YF, Plested E, Preciado-Llanes L, Napolitani G, Simmons A, Gordon MA, Angus B, Darton TC, Cerundulo V, Pollard AJ (2020) Homologous and heterologous re-challenge with Salmonella typhi and Salmonella paratyphi A in a randomised controlled human infection model. PLoS Negl Trop Dis 14(10):e0008783. https://doi.org/10.1371/journal.pntd.0008783

    Article  Google Scholar 

  • Giersing BK, Porter CK, Kotloff K, Neels P, Cravioto A, MacLennan CA (2019) How can controlled human infection models accelerate clinical development and policy pathways for vaccines against Shigella? Vaccine 37(34):4778–4783. https://doi.org/10.1016/j.vaccine.2019.03.036

    Article  Google Scholar 

  • Gorden J, Small PL (1993) Acid resistance in enteric bacteria. Infect Immun 61(1):364–367. https://doi.org/10.1128/IAI.61.1.364-367.1993

    Article  Google Scholar 

  • Gordon SB, Rylance J, Luck A, Jambo K, Ferreira DM, Manda-Taylor L, Bejon P, Ngwira B, Littler K, Seager Z, Gibani M, Gmeiner M, Roestenberg M, Mlombe Y, Cwp WT (2017) A framework for Controlled Human Infection Model (CHIM) studies in Malawi: report of a wellcome trust workshop on CHIM in low income countries held in Blantyre, Malawi. Wellcome Open Res 2:70. https://doi.org/10.12688/wellcomeopenres.12256.1

    Article  Google Scholar 

  • Gregory M, Kaminski RW, Lugo-Roman LA, Galvez Carrillo H, Tilley DH, Baldeviano C, Simons MP, Reynolds ND, Ranallo RT, Suvarnapunya AE, Venkatesan MM, Oaks EV (2014) Development of an Aotus nancymaae model for Shigella vaccine immunogenicity and efficacy studies. Infect Immun 82(5):2027–2036. https://doi.org/10.1128/IAI.01665-13

    Article  Google Scholar 

  • Gu B, Cao Y, Pan S, Zhuang L, Yu R, Peng Z, Qian H, Wei Y, Zhao L, Liu G, Tong M (2012) Comparison of the prevalence and changing resistance to nalidixic acid and ciprofloxacin of Shigella between Europe-America and Asia-Africa from 1998 to 2009. Int J Antimicrob Agents 40(1):9–17. https://doi.org/10.1016/j.ijantimicag.2012.02.005

    Article  Google Scholar 

  • Guerrant RL, DeBoer MD, Moore SR, Scharf RJ, Lima AA (2013) The impoverished gut–a triple burden of diarrhoea, stunting and chronic disease. Nat Rev Gastroenterol Hepatol 10(4):220–229. https://doi.org/10.1038/nrgastro.2012.239

    Article  Google Scholar 

  • Guerrant RL, Bolick DT, Swann JR (2021) Modeling enteropathy or diarrhea with the top bacterial and protozoal pathogens: differential determinants of outcomes. ACS Infect Dis 7(5):1020–1031. https://doi.org/10.1021/acsinfecdis.0c00831

    Article  Google Scholar 

  • Gupta A, Polyak CS, Bishop RD, Sobel J, Mintz ED (2004) Laboratory-confirmed shigellosis in the United States, 1989–2002: epidemiologic trends and patterns. Clin Infect Dis 38(10):1372–1377. https://doi.org/10.1086/386326

    Article  Google Scholar 

  • Haks MC, Bottazzi B, Cecchinato V, De Gregorio C, Del Giudice G, Kaufmann SHE, Lanzavecchia A, Lewis DJM, Maertzdorf J, Mantovani A, Sallusto F, Sironi M, Uguccioni M, Ottenhoff THM (2017) Molecular signatures of immunity and immunogenicity in infection and vaccination. Front Immunol 8:1563. https://doi.org/10.3389/fimmu.2017.01563

    Article  Google Scholar 

  • Hartman AB, Powell CJ, Schultz CL, Oaks EV, Eckels KH (1991) Small-animal model to measure efficacy and immunogenicity of Shigella vaccine strains. Infect Immun 59(11):4075–4083. https://doi.org/10.1128/IAI.59.11.4075-4083.1991

    Article  Google Scholar 

  • Hartman AB, Van de Verg LL, Collins HH Jr, Tang DB, Bendiuk NO, Taylor DN, Powell CJ (1994) Local immune response and protection in the guinea pig keratoconjunctivitis model following immunization with Shigella vaccines. Infect Immun 62(2):412–420. https://doi.org/10.1128/IAI.62.2.412-420.1994

    Article  Google Scholar 

  • Harutyunyan S, Neuhauser I, Mayer A, Aichinger M, Szijarto V, Nagy G, Nagy E, Girardi P, Malinoski FJ, Henics T (2020) Characterization of ShigETEC, a novel live attenuated combined vaccine against Shigellae and ETEC. Vaccines (Basel) 8(4). https://doi.org/10.3390/vaccines8040689

  • Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18(1):83. https://doi.org/10.1186/s13059-017-1215-1

    Article  Google Scholar 

  • Herrington DA, Van de Verg L, Formal SB, Hale TL, Tall BD, Cryz SJ, Tramont EC, Levine MM (1990) Studies in volunteers to evaluate candidate Shigella vaccines: further experience with a bivalent Salmonella typhi-Shigella sonnei vaccine and protection conferred by previous Shigella sonnei disease. Vaccine 8(4):353–357. https://doi.org/10.1016/0264-410X(90)90094-3[pii]

    Article  Google Scholar 

  • Holmgren J, Parashar UD, Plotkin S, Louis J, Ng SP, Desauziers E, Picot V, Saadatian-Elahi M (2017) Correlates of protection for enteric vaccines. Vaccine 35(26):3355–3363. https://doi.org/10.1016/j.vaccine.2017.05.005

    Article  Google Scholar 

  • Islam D, Bandholtz L, Nilsson J, Wigzell H, Christensson B, Agerberth B, Gudmundsson G (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7(2):180–185. https://doi.org/10.1038/84627

    Article  Google Scholar 

  • Jao I, Marsh V, Che Chi P, Kapulu M, Hamaluba M, Molyneux S, Bejon P, Kamuya D (2020) Deliberately infecting healthy volunteers with malaria parasites: perceptions and experiences of participants and other stakeholders in a Kenyan-based malaria infection study. Bioethics 34(8):819–832. https://doi.org/10.1111/bioe.12781

    Article  Google Scholar 

  • Jin C, Gibani MM, Moore M, Juel HB, Jones E, Meiring J, Harris V, Gardner J, Nebykova A, Kerridge SA, Hill J, Thomaides-Brears H, Blohmke CJ, Yu LM, Angus B, Pollard AJ (2017) Efficacy and immunogenicity of a Vi-tetanus toxoid conjugate vaccine in the prevention of typhoid fever using a controlled human infection model of Salmonella typhi: a randomised controlled, phase 2b trial. Lancet 390(10111):2472–2480. https://doi.org/10.1016/S0140-6736(17)32149-9

    Article  Google Scholar 

  • Jin C, Hill J, Gunn BM, Yu WH, Dahora LC, Jones E, Johnson M, Gibani MM, Spreng RL, Alam SM, Nebykova A, Juel HB, Dennison SM, Seaton KE, Fallon JK, Tomaras GD, Alter G, Pollard AJ (2021) Vi-specific serological correlates of protection for typhoid fever. J Exp Med 218(2). https://doi.org/10.1084/jem.20201116

  • Jones FR, Hall ER, Tribble D, Savarino SJ, Cassels FJ, Porter C, Meza R, Nunez G, Espinoza N, Salazar M, Luckett R, Scott D (2006a) The new world primate, Aotus nancymae, as a model for examining the immunogenicity of a prototype enterotoxigenic Escherichia coli subunit vaccine. Vaccine 24(18):3786–3792. https://doi.org/10.1016/j.vaccine.2005.07.029

    Article  Google Scholar 

  • Jones FR, Baqar S, Gozalo A, Nunez G, Espinoza N, Reyes SM, Salazar M, Meza R, Porter CK, Walz SE (2006b) New world monkey Aotus nancymae as a model for Campylobacter jejuni infection and immunity. Infect Immun 74(1):790–793. https://doi.org/10.1128/IAI.74.1.790-793.2006

    Article  Google Scholar 

  • Kaminski RW, Wu M, Turbyfill KR, Clarkson K, Tai B, Bourgeois AL, Van De Verg LL, Walker RI, Oaks EV (2014) Development and preclinical evaluation of a trivalent, formalin-inactivated Shigella whole-cell vaccine. Clin Vaccine Immunol 21(3):366–382. https://doi.org/10.1128/CVI.00683-13

    Article  Google Scholar 

  • Kapulu MC, Njuguna P, Hamaluba MM, Team C-SS (2018) Controlled human malaria infection in semi-immune Kenyan adults (CHMI-SIKA): a study protocol to investigate in vivo Plasmodium falciparum Malaria parasite growth in the context of pre-existing immunity. Wellcome Open Res 3:155. https://doi.org/10.12688/wellcomeopenres.14909.2

  • Kapumba BM, Jambo K, Rylance J, Gmeiner M, Sambakunsi R, Parker M, Gordon SB, Gooding K (2020) Stakeholder views on the acceptability of human infection studies in Malawi. BMC Med Ethics 21(1):14. https://doi.org/10.1186/s12910-020-0454-y

    Article  Google Scholar 

  • Kararli TT (1995) Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 16(5):351–380. https://doi.org/10.1002/bdd.2510160502

    Article  Google Scholar 

  • Katona P, Katona-Apte J (2008) The interaction between nutrition and infection. Clin Infect Dis 46(10):1582–1588. https://doi.org/10.1086/587658

    Article  Google Scholar 

  • Kenne L, Lindberg B, Petersson K, Katzenellenbogen E, Romanowska E (1978) Structural studies of Shigella flexneri O-antigens. Eur J Biochem 91(1):279–284. https://doi.org/10.1111/j.1432-1033.1978.tb20963.x

    Article  Google Scholar 

  • Keren DF, McDonald RA, Carey JL (1988) Combined parenteral and oral immunization results in an enhanced mucosal immunoglobulin A response to Shigella flexneri. Infect Immun 56(4):910–915. https://doi.org/10.1128/IAI.56.4.910-915.1988

    Article  Google Scholar 

  • Kerneis S, Guerin PJ, von Seidlein L, Legros D, Grais RF (2009) A look back at an ongoing problem: Shigella dysenteriae type 1 epidemics in refugee settings in Central Africa (1993–1995). PLoS ONE 4(2):e4494. https://doi.org/10.1371/journal.pone.0004494

    Article  Google Scholar 

  • Kim YJ, Yeo SG, Park JH, Ko HJ (2013) Shigella vaccine development: prospective animal models and current status. Curr Pharm Biotechnol 14(10):903–912. https://doi.org/10.2174/1389201014666131226123900

    Article  Google Scholar 

  • Kim JO, Rho S, Kim SH, Kim H, Song HJ, Kim EJ, Kim RY, Kim EH, Sinha A, Dey A, Yang JS, Song MK, Nandy RK, Czerkinsky C, Kim DW (2015) Shigella outer membrane protein PSSP-1 is broadly protective against Shigella infection. Clin Vaccine Immunol 22(4):381–388. https://doi.org/10.1128/CVI.00661-14

    Article  Google Scholar 

  • Kirkpatrick BD, Sack DA, Bourgeois AL, Mallett CP, Shimko J, Gross LM, Linden J, Gomes G, Fries LF (2000) A challenge model of Shigellosis. In: 49th annual meeting on American society of tropical medicine and hygiene, Houston, TX, October 2000

    Google Scholar 

  • Knirel YA, Sun Q, Senchenkova SN, Perepelov AV, Shashkov AS, Xu J (2015) O-antigen modifications providing antigenic diversity of Shigella flexneri and underlying genetic mechanisms. Biochem Mosc 80(7):901–914. https://doi.org/10.1134/S0006297915070093

    Article  Google Scholar 

  • Koestler BJ, Ward CM, Fisher CR, Rajan A, Maresso AW, Payne SM (2019) Human intestinal enteroids as a model system of Shigella pathogenesis. Infect Immun 87(4). https://doi.org/10.1128/IAI.00733-18

  • Korpe PS, Petri WA Jr (2012) Environmental enteropathy: critical implications of a poorly understood condition. Trends Mol Med 18(6):328–336. https://doi.org/10.1016/j.molmed.2012.04.007

    Article  Google Scholar 

  • Kosek MN, Investigators M-EN (2017) Causal pathways from enteropathogens to environmental enteropathy: findings from the MAL-ED birth cohort study. EBioMedicine 18:109–117. https://doi.org/10.1016/j.ebiom.2017.02.024

    Article  Google Scholar 

  • Kotloff KL, Nataro JP, Losonsky GA, Wasserman SS, Hale TL, Taylor DN, Sadoff JC, Levine MM (1995a) A modified Shigella volunteer challenge model in which the inoculum is administered with bicarbonate buffer: clinical experience and implications for Shigella infectivity. Vaccine 13(16):1488–1494

    Google Scholar 

  • Kotloff KL, Losonsky GA, Nataro JP, Wasserman SS, Hale TL, Taylor DN, Newland JW, Sadoff JC, Formal SB, Levine MM (1995b) Evaluation of the safety, immunogenicity, and efficacy in healthy adults of four doses of live oral hybrid Escherichia coli-Shigella flexneri 2a vaccine strain EcSf2a-2. Vaccine 13(5):495–502. https://doi.org/10.1016/0264-410x(94)00011-b

    Article  Google Scholar 

  • Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ, Adak GK, Levine MM (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77(8):651–666

    Google Scholar 

  • Kunda-Ng’andu EM, Simuyandi M, Kapulu M, Chirwa-Chobe M, Mwanyungwi-Chinganya H, Mwale S, Chilengi R, Sharma A (2021) Engagement of ethics and regulatory authorities on human infection studies: proceedings of an engagement workshop in Zambia. Wellcome Open Res 6:31. https://doi.org/10.12688/wellcomeopenres.16432.1

  • Lamberti LM, Bourgeois AL, Fischer Walker CL, Black RE, Sack D (2014) Estimating diarrheal illness and deaths attributable to Shigellae and enterotoxigenic Escherichia coli among older children, adolescents, and adults in South Asia and Africa. PLoS Negl Trop Dis 8(2):e2705. https://doi.org/10.1371/journal.pntd.0002705

    Article  Google Scholar 

  • Lefebvre J, Gosselin F, Ismail J, Lorange M, Lior H, Woodward D (1995) Evaluation of commercial antisera for Shigella serogrouping. J Clin Microbiol 33(8):1997–2001. https://doi.org/10.1128/JCM.33.8.1997-2001.1995

    Article  Google Scholar 

  • Levine MM, Woodward WE, Formal SB, Gemski P Jr, DuPont HL, Hornick RB, Snyder MJ (1977) Studies with a new generation of oral attenuated shigella vaccine: Escherichia coli bearing surface antigens of Shigella flexneri. J Infect Dis 136(4):577–582. https://doi.org/10.1093/infdis/136.4.577

    Article  Google Scholar 

  • Levine MM, Dupont HL, Gangarosa EJ, Hornick RB, Snyder MJ, Libonati JP, Glaser K, Formal SB (1972) Shigellosis in custodial institutions. II. Clinical, immunologic and bacteriologic response of institutionalized children to oral attenuated shigella vaccines. Am J Epidemiol 96 (1):40–49. https://doi.org/10.1093/oxfordjournals.aje.a121431

  • Levine MM, Gangarosa EJ, Barrow WB, Morris GK, Wells JG, Weiss CF (1975) Shigellosis in custodial institutions. IV. In vivo stability and transmissibility of oral attenuated streptomycin-dependent Shigella vaccines. J Infect Dis 131(6):704–707

    Google Scholar 

  • Li S, Nakaya HI, Kazmin DA, Oh JZ, Pulendran B (2013) Systems biological approaches to measure and understand vaccine immunity in humans. Semin Immunol 25(3):209–218. https://doi.org/10.1016/j.smim.2013.05.003

    Article  Google Scholar 

  • Lindberg AA, Karnell A, Weintraub A (1991) The lipopolysaccharide of Shigella bacteria as a virulence factor. Rev Infect Dis 13(Suppl 4):S279-284. https://doi.org/10.1093/clinids/13.supplement_4.s279

    Article  Google Scholar 

  • Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q, Reeves PR, Wang L (2008) Structure and genetics of Shigella O antigens. FEMS Microbiol Rev 32(4):627–653. https://doi.org/10.1111/j.1574-6976.2008.00114.x

    Article  Google Scholar 

  • Liu J, Platts-Mills JA, Juma J, Kabir F, Nkeze J, Okoi C, Operario DJ, Uddin J, Ahmed S, Alonso PL, Antonio M, Becker SM, Blackwelder WC, Breiman RF, Faruque AS, Fields B, Gratz J, Haque R, Hossain A, Hossain MJ, Jarju S, Qamar F, Iqbal NT, Kwambana B, Mandomando I, McMurry TL, Ochieng C, Ochieng JB, Ochieng M, Onyango C, Panchalingam S, Kalam A, Aziz F, Qureshi S, Ramamurthy T, Roberts JH, Saha D, Sow SO, Stroup SE, Sur D, Tamboura B, Taniuchi M, Tennant SM, Toema D, Wu Y, Zaidi A, Nataro JP, Kotloff KL, Levine MM, Houpt ER (2016) Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study. Lancet 388(10051):1291–1301. https://doi.org/10.1016/S0140-6736(16)31529-X

    Article  Google Scholar 

  • Livio S, Strockbine NA, Panchalingam S, Tennant SM, Barry EM, Marohn ME, Antonio M, Hossain A, Mandomando I, Ochieng JB, Oundo JO, Qureshi S, Ramamurthy T, Tamboura B, Adegbola RA, Hossain MJ, Saha D, Sen S, Faruque AS, Alonso PL, Breiman RF, Zaidi AK, Sur D, Sow SO, Berkeley LY, O’Reilly CE, Mintz ED, Biswas K, Cohen D, Farag TH, Nasrin D, Wu Y, Blackwelder WC, Kotloff KL, Nataro JP, Levine MM (2014) Shigella isolates from the global enteric multicenter study inform vaccine development. Clin Infect Dis 59(7):933–941. https://doi.org/10.1093/cid/ciu468

    Article  Google Scholar 

  • MacLennan CA, Aguilar AO, Steele AD (2019a) Consensus report on Shigella controlled human infection model: introduction and overview. Clin Infect Dis 69(Suppl 8):S577–S579. https://doi.org/10.1093/cid/ciz886

    Article  Google Scholar 

  • MacLennan CA, Riddle MS, Chen WH, Talaat KR, Jain V, Bourgeois AL, Frenck R, Kotloff K, Porter CK (2019) Consensus report on Shigella controlled human infection model: clinical endpoints. Clin Infect Dis 69(Supplement_8):S591–S595. https://doi.org/10.1093/cid/ciz891

  • Madhi SA, Cunliffe NA, Steele D, Witte D, Kirsten M, Louw C, Ngwira B, Victor JC, Gillard PH, Cheuvart BB, Han HH, Neuzil KM (2010) Effect of human rotavirus vaccine on severe diarrhea in African infants. N Engl J Med 362(4):289–298. https://doi.org/10.1056/NEJMoa0904797

    Article  Google Scholar 

  • Mallett CP, VanDeVerg L, Collins HH, Hale TL (1993) Evaluation of Shigella vaccine safety and efficacy in an intranasally challenged mouse model. Vaccine 11(2):190–196. https://doi.org/10.1016/0264-410x(93)90016-q

    Article  Google Scholar 

  • Martinez-Becerra FJ, Kissmann JM, Diaz-McNair J, Choudhari SP, Quick AM, Mellado-Sanchez G, Clements JD, Pasetti MF, Picking WL (2012) Broadly protective Shigella vaccine based on type III secretion apparatus proteins. Infect Immun 80(3):1222–1231. https://doi.org/10.1128/IAI.06174-11

    Article  Google Scholar 

  • Martinez-Becerra FJ, Chen X, Dickenson NE, Choudhari SP, Harrison K, Clements JD, Picking WD, Van De Verg LL, Walker RI, Picking WL (2013) Characterization of a novel fusion protein from IpaB and IpaD of Shigella spp. and its potential as a pan-Shigella vaccine. Infect Immun 81 (12):4470–4477. https://doi.org/10.1128/IAI.00859-13

  • Martins NE, Faria VG, Teixeira L, Magalhaes S, Sucena E (2013) Host adaptation is contingent upon the infection route taken by pathogens. PLoS Pathog 9(9):e1003601. https://doi.org/10.1371/journal.ppat.1003601

    Article  Google Scholar 

  • Medeiros PHQS, Ledwaba SE, Bolick DT, Giallourou N, Yum LK, Costa DVS, Oria RB, Barry EM, Swann JR, Lima AAM, Agaisse H, Guerrant RL (2019) A murine model of diarrhea, growth impairment and metabolic disturbances with Shigella flexneri infection and the role of zinc deficiency. Gut Microbes 10(5):615–630. https://doi.org/10.1080/19490976.2018.1564430

    Article  Google Scholar 

  • Medeiros PHQS, Bolick DT, Ledwaba SE, Kolling GL, Costa DVS, Oria RB, Lima AAM, Barry EM, Guerrant RL (2020) A bivalent vaccine confers immunogenicity and protection against Shigella flexneri and enterotoxigenic Escherichia coli infections in mice. NPJ Vaccines 5(1):30. https://doi.org/10.1038/s41541-020-0180-y

    Article  Google Scholar 

  • Mel DM, Arsic BL, Radovanovic ML, Litvinjenko SA (1974) Live oral Shigella vaccine: vaccination schedule and the effect of booster dose. Acta Microbiol Acad Sci Hung 21(1–2):109–114

    Google Scholar 

  • Mel DM, Terzin AL, Vuksic L (1965) Studies on vaccination against bacillary dysentery. 1. Immunization of mice against experimental Shigella infection. Bull World Health Organ 32(5):633–636

    Google Scholar 

  • Mel DM, Papo RG, Terzin AL, Vuksic L (1965) Studies on vaccination against bacillary dysentery. 2. Safety tests and reactogenicity studies on a live dysentery vaccine intended for use in field trials. Bull World Health Organ 32(5):637–645

    Google Scholar 

  • Mel DM, Terzin AL, Vuksic L (1965) Studies on vaccination against bacillary dysentery. 3. Effective oral immunization against Shigella flexneri 2a in a field trial. Bull World Health Organ 32(5):647–655

    Google Scholar 

  • Mel DM, Arsic BL, Nikolic BD, Radovanic ML (1968) Studies on vaccination against bacillary dysentery. 4. Oral immunization with live monotypic and combined vaccines. Bull World Health Organ 39(3):375–380

    Google Scholar 

  • Mel D, Gangarosa EJ, Radovanovic ML, Arsic BL, Litvinjenko S (1971) Studies on vaccination against bacillary dysentery. 6. Protection of children by oral immunization with streptomycin-dependent Shigella strains. Bull World Health Organ 45(4):457–464

    Google Scholar 

  • Memoli MJ, Czajkowski L, Reed S, Athota R, Bristol T, Proudfoot K, Fargis S, Stein M, Dunfee RL, Shaw PA, Davey RT, Taubenberger JK (2015) Validation of the wild-type influenza A human challenge model H1N1pdMIST: an A(H1N1)pdm09 dose-finding investigational new drug study. Clin Infect Dis 60(5):693–702. https://doi.org/10.1093/cid/ciu924

    Article  Google Scholar 

  • Minassian AMSS, Barret JR, Nielsen CM, Miura K, Diouf A, Loos C, Fallon JK, Michel AR, White MT, Edwards NJ, Poulton ID, Mitton CH, Payne RO, Marks M, Smaxweel-scott H, Querol-Rubiera A, Bisnauthsing K, Batra R, Ogrina T, Brendish NJ, Themistocleous Y, Rawlinson TA, Ellis KJ, Quinkert D, Baker M, Ramon RL, Lopex RF, Barford L, Folegatti PM, Silman D, Datoo M, Taylor IJ, Jin J, Pulido D, Douglas AD, de Jongh WA, Smith R, Berrie E, Noe AR, Diggs CL, Soisson LA, Ashfield R, Faust SN, Goodman AL, Lawrie AM, Nugent FL, Alter G, Long CA, Draper SJ (2021) Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. Med. https://doi.org/10.1016/j.medj.2021.03.014

    Article  Google Scholar 

  • Molloy MJ, Bouladoux N, Belkaid Y (2012) Intestinal microbiota: shaping local and systemic immune responses. Semin Immunol 24(1):58–66. https://doi.org/10.1016/j.smim.2011.11.008

    Article  Google Scholar 

  • Mondal D, Minak J, Alam M, Liu Y, Dai J, Korpe P, Liu L, Haque R, Petri WA Jr (2012) Contribution of enteric infection, altered intestinal barrier function, and maternal malnutrition to infant malnutrition in Bangladesh. Clin Infect Dis 54(2):185–192. https://doi.org/10.1093/cid/cir807

    Article  Google Scholar 

  • Morris CR, Grassel CL, Redman JC, Sahl JW, Barry EM, Rasko DA (2013) Characterization of intracellular growth regulator icgR by utilizing transcriptomics to identify mediators of pathogenesis in Shigella flexneri. Infect Immun 81(9):3068–3076. https://doi.org/10.1128/IAI.00537-13

    Article  Google Scholar 

  • Mosley JF 2nd, Smith LL, Brantley P, Locke D, Como M (2017) Vaxchora: the first FDA-approved Cholera vaccination in the United States. P T 42(10):638–640

    Google Scholar 

  • Munoz C, Baqar S, van de Verg L, Thupari J, Goldblum S, Olson JG, Taylor DN, Heresi GP, Murphy JR (1995) Characteristics of Shigella sonnei infection of volunteers: signs, symptoms, immune responses, changes in selected cytokines and acute-phase substances. Am J Trop Med Hyg 53(1):47–54

    Google Scholar 

  • Muthuirulandi Sethuvel DP, Devanga Ragupathi NK, Anandan S, Veeraraghavan B (2017) Update on: Shigella new serogroups/serotypes and their antimicrobial resistance. Lett Appl Microbiol 64(1):8–18. https://doi.org/10.1111/lam.12690

    Article  Google Scholar 

  • Nakaya HI, Pulendran B (2015) Vaccinology in the era of high-throughput biology. Philos Trans R Soc Lond B Biol Sci 370(1671). https://doi.org/10.1098/rstb.2014.0146

  • Ndungo E, Randall A, Hazen TH, Kania DA, Trappl-Kimmons K, Liang X, Barry EM, Kotloff KL, Chakraborty S, Mani S, Rasko DA, Pasetti MF (2018) A novel shigella proteome microarray discriminates targets of human antibody reactivity following oral vaccination and experimental challenge. mSphere 3(4). https://doi.org/10.1128/mSphere.00260-18

  • Ndungo E, Pasetti MF (2020) Functional antibodies as immunological endpoints to evaluate protective immunity against Shigella. Hum Vaccin Immunother 16(1):197–205. https://doi.org/10.1080/21645515.2019.1640427

    Article  Google Scholar 

  • Njue M, Njuguna P, Kapulu MC, Sanga G, Bejon P, Marsh V, Molyneux S, Kamuya D (2018) Ethical considerations in controlled human Malaria Infection studies in low resource settings: experiences and perceptions of study participants in a malaria challenge study in Kenya. Wellcome Open Res 3:39. https://doi.org/10.12688/wellcomeopenres.14439.2

    Article  Google Scholar 

  • Noriega FR, Liao FM, Maneval DR, Ren S, Formal SB, Levine MM (1999) Strategy for cross-protection among Shigella flexneri serotypes. Infect Immun 67(2):782–788. https://doi.org/10.1128/IAI.67.2.782-788.1999

    Article  Google Scholar 

  • Oaks EV, Hale TL, Formal SB (1986) Serum immune response to Shigella protein antigens in rhesus monkeys and humans infected with Shigella spp. Infect Immun 53(1):57–63. https://doi.org/10.1128/iai.53.1.57-63.1986

    Article  Google Scholar 

  • Oaks EV, Picking WD, Picking WL (1996) Antibody response of monkeys to invasion plasmid antigen D after infection with Shigella spp. Clin Diagn Lab Immunol 3(2):242–245. https://doi.org/10.1128/cdli.3.2.242-245.1996

    Article  Google Scholar 

  • Obiero CW, Ndiaye AGW, Scire AS, Kaunyangi BM, Marchetti E, Gone AM, Schutte LD, Riccucci D, Auerbach J, Saul A, Martin LB, Bejon P, Njuguna P, Podda A (2017) A phase 2a randomized study to evaluate the safety and immunogenicity of the 1790GAHB generalized modules for membrane antigen vaccine against Shigella sonnei administered intramuscularly to adults from a Shigellosis-endemic country. Front Immunol 8:1884. https://doi.org/10.3389/fimmu.2017.01884

    Article  Google Scholar 

  • Olson S, Hall A, Riddle MS, Porter CK (2019) Travelers’ diarrhea: update on the incidence, etiology and risk in military and similar populations—1990–2005 versus 2005–2015, does a decade make a difference? Trop Dis Travel Med Vaccines 5:1. https://doi.org/10.1186/s40794-018-0077-1

    Article  Google Scholar 

  • Passwell JH, Harlev E, Ashkenazi S, Chu C, Miron D, Ramon R, Farzan N, Shiloach J, Bryla DA, Majadly F, Roberson R, Robbins JB, Schneerson R (2001) Safety and immunogenicity of improved Shigella O-specific polysaccharide-protein conjugate vaccines in adults in Israel. Infect Immun 69(3):1351–1357. https://doi.org/10.1128/IAI.69.3.1351-1357.2001

    Article  Google Scholar 

  • Passwell JH, Ashkenazi S, Harlev E, Miron D, Ramon R, Farzam N, Lerner-Geva L, Levi Y, Chu C, Shiloach J, Robbins JB, Schneerson R, Israel Shigella Study G (2003) Safety and immunogenicity of Shigella sonnei-CRM9 and Shigella flexneri type 2a-rEPAsucc conjugate vaccines in one- to four-year-old children. Pediatr Infect Dis J 22(8):701–706. https://doi.org/10.1097/01.inf.0000078156.03697.a5

  • Passwell JH, Ashkenazi S, Banet-Levi Y, Ramon-Saraf R, Farzam N, Lerner-Geva L, Even-Nir H, Yerushalmi B, Chu C, Shiloach J, Robbins JB, Schneerson R, Israeli Shigella Study G (2010) Age-related efficacy of Shigella O-specific polysaccharide conjugates in 1–4-year-old Israeli children. Vaccine 28(10):2231–2235. https://doi.org/10.1016/j.vaccine.2009.12.050

  • Pavlinac PB, Singa BO, John-Stewart GC, Richardson BA, Brander RL, McGrath CJ, Tickell KD, Amondi M, Rwigi D, Babigumira JB, Kariuki S, Nduati R, Walson JL (2017) Azithromycin to prevent post-discharge morbidity and mortality in Kenyan children: a protocol for a randomised, double-blind, placebo-controlled trial (the Toto Bora trial). BMJ Open 7(12):e019170. https://doi.org/10.1136/bmjopen-2017-019170

    Article  Google Scholar 

  • Perepelov AV, Shekht ME, Liu B, Shevelev SD, Ledov VA, Senchenkova SN, L’Vov VL, Shashkov AS, Feng L, Aparin PG, Wang L, Knirel YA (2012) Shigella flexneri O-antigens revisited: final elucidation of the O-acetylation profiles and a survey of the O-antigen structure diversity. FEMS Immunol Med Microbiol 66(2):201–210. https://doi.org/10.1111/j.1574-695X.2012.01000.x

    Article  Google Scholar 

  • Pitisuttithum P, Islam D, Chamnanchanunt S, Ruamsap N, Khantapura P, Kaewkungwal J, Kittitrakul C, Luvira V, Dhitavat J, Venkatesan MM, Mason CJ, Bodhidatta L (2016) Clinical trial of an oral live Shigella sonnei vaccine candidate, WRSS1, in Thai Adults. Clin Vaccine Immunol 23(7):564–575. https://doi.org/10.1128/CVI.00665-15

    Article  Google Scholar 

  • Plotkin SA (2001) Immunologic correlates of protection induced by vaccination. Pediatr Infect Dis J 20(1):63–75. https://doi.org/10.1097/00006454-200101000-00013

    Article  Google Scholar 

  • Plotkin SA (2010) Correlates of protection induced by vaccination. Clin Vaccine Immunol 17(7):1055–1065. https://doi.org/10.1128/CVI.00131-10

    Article  Google Scholar 

  • Pogreba-Brown K, Austhof E, Armstrong A, Schaefer K, Villa Zapata L, McClelland DJ, Batz MB, Kuecken M, Riddle M, Porter CK, Bazaco MC (2020) Chronic gastrointestinal and joint-related sequelae associated with common foodborne illnesses: a scoping review. Foodborne Pathog Dis 17(2):67–86. https://doi.org/10.1089/fpd.2019.2692

    Article  Google Scholar 

  • Pollard AJ, Sauerwein R, Baay M, Neels P, speakers HCT, session c, (2020) Third human challenge trial conference, Oxford, United Kingdom, February 6–7, 2020, a meeting report. Biologicals 66:41–52. https://doi.org/10.1016/j.biologicals.2020.04.004

    Article  Google Scholar 

  • Porter CK, Thura N, Ranallo RT, Riddle MS (2013) The Shigella human challenge model. Epidemiol Infect 141(2):223–232. https://doi.org/10.1017/S0950268812001677

    Article  Google Scholar 

  • Porter CK, Lynen A, Riddle MS, Talaat K, Sack D, Gutierrez RL, McKenzie R, DeNearing B, Feijoo B, Kaminski RW, Taylor DN, Kirkpatrick BD, Bourgeois AL (2018) Clinical endpoints in the controlled human challenge model for Shigella: a call for standardization and the development of a disease severity score. PLoS ONE 13(3):e0194325. https://doi.org/10.1371/journal.pone.0194325

    Article  Google Scholar 

  • Porter CK, Gutierrez RL, Kotloff KL (2019) Clinical endpoints for efficacy studies. Vaccine 37(34):4814–4822. https://doi.org/10.1016/j.vaccine.2019.03.051

    Article  Google Scholar 

  • Pulendran B, Li S, Nakaya HI (2010) Systems vaccinology. Immunity 33(4):516–529. https://doi.org/10.1016/j.immuni.2010.10.006

    Article  Google Scholar 

  • Pupo GM, Lan R, Reeves PR (2000) Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci USA 97(19):10567–10572. https://doi.org/10.1073/pnas.180094797

    Article  Google Scholar 

  • Qadri F, Chowdhury MI, Faruque SM, Salam MA, Ahmed T, Begum YA, Saha A, Alam MS, Zaman K, Seidlein LV, Park E, Killeen KP, Mekalanos JJ, Clemens JD, Sack DA, Peru-15 Study G (2005) Randomized, controlled study of the safety and immunogenicity of Peru-15, a live attenuated oral vaccine candidate for cholera, in adult volunteers in Bangladesh. J Infect Dis 192(4):573–579. https://doi.org/10.1086/432074

  • Qadri F, Chowdhury MI, Faruque SM, Salam MA, Ahmed T, Begum YA, Saha A, Al Tarique A, Seidlein LV, Park E, Killeen KP, Mekalanos JJ, Clemens JD, Sack DA, Group PXVS (2007) Peru-15, a live attenuated oral cholera vaccine, is safe and immunogenic in Bangladeshi toddlers and infants. Vaccine 25(2):231–238. https://doi.org/10.1016/j.vaccine.2006.08.031

  • Qiu S, Xu X, Yang C, Wang J, Liang B, Li P, Li H, Yi S, Liu H, Cui X, Wu Z, Xie J, Jia L, Wang L, Hao R, Jin H, Wang Y, Sun Y, Song H (2015) Shift in serotype distribution of Shigella species in China, 2003–2013. Clin Microbiol Infect 21(3):252 e255–258. https://doi.org/10.1016/j.cmi.2014.10.019

  • Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, Pirani A, Gernert K, Deng J, Marzolf B, Kennedy K, Wu H, Bennouna S, Oluoch H, Miller J, Vencio RZ, Mulligan M, Aderem A, Ahmed R, Pulendran B (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10(1):116–125. https://doi.org/10.1038/ni.1688

    Article  Google Scholar 

  • Ram PK, Crump JA, Gupta SK, Miller MA, Mintz ED (2008) Part II. Analysis of data gaps pertaining to Shigella infections in low and medium human development index countries, 1984–2005. Epidemiol Infect 136(5):577–603. https://doi.org/10.1017/S0950268807009351

  • Ramanathan R, Stibitz S, Pratt D, Roberts J (2019) Use of controlled human infection models (CHIMs) to support vaccine development: US regulatory considerations. Vaccine 37(31):4256–4261. https://doi.org/10.1016/j.vaccine.2019.06.009

    Article  Google Scholar 

  • Randall A (2021) Protein and LPS-based microarrays: a versatile immune-profiling platform for measuring antibody binding to vaccine-relevant Shigella and ETEC antigens. In: VASE virtual symposium, 28 and 30 Sept 2021. PATH|Washington, DC 20001

    Google Scholar 

  • Ranganathan S, Smith EM, Foulke-Abel JD, Barry EM (2020) Research in a time of enteroids and organoids: how the human gut model has transformed the study of enteric bacterial pathogens. Gut Microbes 12(1):1795492. https://doi.org/10.1080/19490976.2020.1795389

    Article  Google Scholar 

  • Ranganathan S, Doucet M, Grassel CL, Delaine-Elias B, Zachos NC, Barry EM (2019) Evaluating Shigella flexneri pathogenesis in the human enteroid model. Infect Immun 87(4). https://doi.org/10.1128/IAI.00740-18

  • Raqib R, Qadri F, SarkEr P, Mia SM, Sansonnetti PJ, Albert MJ, Andersson J (2002) Delayed and reduced adaptive humoral immune responses in children with shigellosis compared with in adults. Scand J Immunol 55(4):414–423. https://doi.org/10.1046/j.1365-3083.2002.01079.x

    Article  Google Scholar 

  • Raqib R, Sarker P, Zaman K, Alam NH, Wierzba TF, Maier N, Talukder K, Baqui AH, Suvarnapunya AE, Qadri F, Walker RI, Fix A, Venkatesan MM (2019) A phase I trial of WRSS1, a Shigella sonnei live oral vaccine in Bangladeshi adults and children. Hum Vaccin Immunother 15(6):1326–1337. https://doi.org/10.1080/21645515.2019.1575165

    Article  Google Scholar 

  • Riddle MS, Sanders JW, Putnam SD, Tribble DR (2006) Incidence, etiology, and impact of diarrhea among long-term travelers (US military and similar populations): a systematic review. Am J Trop Med Hyg 74(5):891–900

    Google Scholar 

  • Riddle MS (2018) Is a Shigella vaccine needed for travellers and the military? J Travel Med 25(1). https://doi.org/10.1093/jtm/tay049

  • Robbins JB, Chu C, Schneerson R (1992) Hypothesis for vaccine development: protective immunity to enteric diseases caused by nontyphoidal salmonellae and shigellae may be conferred by serum IgG antibodies to the O-specific polysaccharide of their lipopolysaccharides. Clin Infect Dis 15(2):346–361. https://doi.org/10.1093/clinids/15.2.346

    Article  Google Scholar 

  • Rogawski ET, Liu J, Platts-Mills JA, Kabir F, Lertsethtakarn P, Siguas M, Khan SS, Praharaj I, Murei A, Nshama R, Mujaga B, Havt A, Maciel IA, Operario DJ, Taniuchi M, Gratz J, Stroup SE, Roberts JH, Kalam A, Aziz F, Qureshi S, Islam MO, Sakpaisal P, Silapong S, Yori PP, Rajendiran R, Benny B, McGrath M, Seidman JC, Lang D, Gottlieb M, Guerrant RL, Lima AAM, Leite JP, Samie A, Bessong PO, Page N, Bodhidatta L, Mason C, Shrestha S, Kiwelu I, Mduma ER, Iqbal NT, Bhutta ZA, Ahmed T, Haque R, Kang G, Kosek MN, Houpt ER, Investigators M-EN (2018) Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob Health 6(12):e1319–e1328. https://doi.org/10.1016/S2214-109X(18)30351-6

    Article  Google Scholar 

  • Rogawski McQuade ET, Shaheen F, Kabir F, Rizvi A, Platts-Mills JA, Aziz F, Kalam A, Qureshi S, Elwood S, Liu J, Lima AAM, Kang G, Bessong P, Samie A, Haque R, Mduma ER, Kosek MN, Shrestha S, Leite JP, Bodhidatta L, Page N, Kiwelu I, Shakoor S, Turab A, Soofi SB, Ahmed T, Houpt ER, Bhutta Z, Iqbal NT (2020) Epidemiology of Shigella infections and diarrhea in the first two years of life using culture-independent diagnostics in 8 low-resource settings. PLoS Negl Trop Dis 14(8):e0008536. https://doi.org/10.1371/journal.pntd.0008536

    Article  Google Scholar 

  • Rollenhagen JE, Jones F, Hall E, Maves R, Nunez G, Espinoza N, O'Dowd A, Prouty MG, Savarino SJ (2019) Establishment, validation, and application of a new world primate model of enterotoxigenic Escherichia coli disease for vaccine development. Infect Immun 87(2). https://doi.org/10.1128/IAI.00634-18

  • Ryan ET, Calderwood SB (2000) Cholera vaccines. Clin Infect Dis 31(2):561–565. https://doi.org/10.1086/313951

    Article  Google Scholar 

  • Sack DA, Hoque AT, Huq A, Etheridge M (1994) Is protection against shigellosis induced by natural infection with Plesiomonas shigelloides? Lancet 343(8910):1413–1415. https://doi.org/10.1016/s0140-6736(94)92531-3

    Article  Google Scholar 

  • Samandari T, Kotloff KL, Losonsky GA, Picking WD, Sansonetti PJ, Levine MM, Sztein MB (2000) Production of IFN-gamma and IL-10 to Shigella invasins by mononuclear cells from volunteers orally inoculated with a Shiga toxin-deleted Shigella dysenteriae type 1 strain. J Immunol 164(4):2221–2232. https://doi.org/10.4049/jimmunol.164.4.2221

    Article  Google Scholar 

  • Sansonetti PJ, Kopecko DJ, Formal SB (1982) Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect Immun 35(3):852–860. https://doi.org/10.1128/IAI.35.3.852-860.1982

    Article  Google Scholar 

  • Sarkar P, Mily A, Ara A, Haque F, Maier N, Wierzba TF, Walker RI (2021) Functional antibodies and innate immune responses to WRSS1, a live oral Shigella sonnei vaccine candidate in Bangladeshi adults and children. J Infect Dis 224(S7):S829–S839. https://doi.org/10.1093/infdis/jiab395)

  • Schroeder GN, Hilbi H (2008) Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 21 (1):134–156. https://doi.org/10.1128/CMR.00032-07

  • Schultsz C, Qadri F, Hossain SA, Ahmed F, Ciznar I (1992) Shigella-specific IgA in saliva of children with bacillary dysentery. FEMS Microbiol Immunol 4(2):65–72. https://doi.org/10.1111/j.1574-6968.1992.tb04972.x

    Article  Google Scholar 

  • Sela U, Euler CW, Correa da Rosa J, Fischetti VA (2018) Strains of bacterial species induce a greatly varied acute adaptive immune response: the contribution of the accessory genome. PLoS Pathog 14(1):e1006726. https://doi.org/10.1371/journal.ppat.1006726

    Article  Google Scholar 

  • Shah N, DuPont HL, Ramsey DJ (2009) Global etiology of travelers’ diarrhea: systematic review from 1973 to the present. Am J Trop Med Hyg 80(4):609–614

    Google Scholar 

  • Shahin K, Bouzari M, Komijani M, Wang R (2020) A new phage cocktail against multidrug, ESBL-producer isolates of Shigella sonnei and Shigella flexneri with highly efficient bacteriolytic activity. Microb Drug Resist 26(7):831–841. https://doi.org/10.1089/mdr.2019.0235

    Article  Google Scholar 

  • Shaughnessy HJ, Olsson RC et al (1946) Experimental human bacillary dysentery; polyvalent dysentery vaccine in its prevention. J Am Med Assoc 132:362–368. https://doi.org/10.1001/jama.1946.02870420002002

    Article  Google Scholar 

  • Shim DH, Suzuki T, Chang SY, Park SM, Sansonetti PJ, Sasakawa C, Kweon MN (2007) New animal model of shigellosis in the Guinea pig: its usefulness for protective efficacy studies. J Immunol 178(4):2476–2482. https://doi.org/10.4049/jimmunol.178.4.2476

    Article  Google Scholar 

  • Shimanovich AA, Buskirk AD, Heine SJ, Blackwelder WC, Wahid R, Kotloff KL, Pasetti MF (2017) Functional and antigen-specific serum antibody levels as correlates of protection against shigellosis in a controlled human challenge study. Clin Vaccine Immunol 24(2). https://doi.org/10.1128/CVI.00412-16

  • Shirley DA, McArthur MA (2011) The utility of human challenge studies in vaccine development: lessons learned from cholera. Vaccine (auckland) 1:3–13. https://doi.org/10.2147/VDT.S23634

    Article  Google Scholar 

  • Simon AK, Hollander GA, McMichael A (2015) Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 282(1821):20143085. https://doi.org/10.1098/rspb.2014.3085

    Article  Google Scholar 

  • Sperandio V (2018) Pathogens’ adaptation to the human host. Proc Natl Acad Sci U S A 115(38):9342–9343. https://doi.org/10.1073/pnas.1813379115

    Article  Google Scholar 

  • Steffen R (2017) Epidemiology of travellers’ diarrhea. J Travel Med 24 (suppl_1):S2–S5. https://doi.org/10.1093/jtm/taw072

  • Tacket CO, Binion SB, Bostwick E, Losonsky G, Roy MJ, Edelman R (1992) Efficacy of bovine milk immunoglobulin concentrate in preventing illness after Shigella flexneri challenge. Am J Trop Med Hyg 47(3):276–283. https://doi.org/10.4269/ajtmh.1992.47.276

    Article  Google Scholar 

  • Talaat KR, Alaimo C, Martin P, Bourgeois AL, Dreyer AM, Kaminski RW, Porter CK, Chakraborty S, Clarkson KA, Brubaker J, Elwood D, Frolich R, DeNearing B, Weerts H, Feijoo BL, Halpern J, Sack D, Riddle MS, Fonck VG (2021) Human challenge study with a Shigella bioconjugate vaccine: analyses of clinical efficacy and correlate of protection. EBioMedicine 66:103310. https://doi.org/10.1016/j.ebiom.2021.103310

    Article  Google Scholar 

  • Talaat KR, Bourgeois AL, Frenck RW, Chen WH, MacLennan CA, Riddle MS, Suvarnapunya AE, Brubaker JL, Kotloff KL, Porter CK (2019) Consensus report on Shigella controlled human infection model: conduct of studies. Clin Infect Dis 69 (Supplement_8):S580–S590. https://doi.org/10.1093/cid/ciz892

  • Taylor DN, McKenzie R, Durbin A, Carpenter C, Atzinger CB, Haake R, Bourgeois AL (2006) Rifaximin, a nonabsorbed oral antibiotic, prevents shigellosis after experimental challenge. Clin Infect Dis 42(9):1283–1288. https://doi.org/10.1086/503039

    Article  Google Scholar 

  • Taylor DN, McKenzie R, Durbin A, Carpenter C, Haake R, Bourgeois AL (2008) Systemic pharmacokinetics of rifaximin in volunteers with shigellosis. Antimicrob Agents Chemother 52(3):1179–1181. https://doi.org/10.1128/AAC.01108-07

    Article  Google Scholar 

  • Teh AY, Cavacini L, Hu Y, Kumru OS, Xiong J, Bolick DT, Joshi SB, Grunwald-Gruber C, Altmann F, Klempner M, Guerrant RL, Volkin DB, Wang Y, Ma JK (2021) Investigation of a monoclonal antibody against enterotoxigenic Escherichia coli, expressed as secretory IgA1 and IgA2 in plants. Gut Microbes 13(1):1–14. https://doi.org/10.1080/19490976.2020.1859813

    Article  Google Scholar 

  • Thompson CN, Duy PT, Baker S (2015) The rising dominance of Shigella sonnei: An intercontinental shift in the etiology of bacillary dysentery. PLoS Negl Trop Dis 9(6):e0003708. https://doi.org/10.1371/journal.pntd.0003708

    Article  Google Scholar 

  • Tickell KD, Brander RL, Atlas HE, Pernica JM, Walson JL, Pavlinac PB (2017) Identification and management of Shigella infection in children with diarrhoea: a systematic review and meta-analysis. Lancet Glob Health 5(12):e1235–e1248. https://doi.org/10.1016/S2214-109X(17)30392-3

    Article  Google Scholar 

  • Tomaras GD, Plotkin SA (2017) Complex immune correlates of protection in HIV-1 vaccine efficacy trials. Immunol Rev 275(1):245–261. https://doi.org/10.1111/imr.12514

    Article  Google Scholar 

  • Trautmann L, Sekaly RP (2011) Solving vaccine mysteries: a systems biology perspective. Nat Immunol 12(8):729–731. https://doi.org/10.1038/ni.2078

    Article  Google Scholar 

  • Turbyfill KR, Joseph SW, Oaks EV (1995) Recognition of three epitopic regions on invasion plasmid antigen C by immune sera of rhesus monkeys infected with Shigella flexneri 2a. Infect Immun 63(10):3927–3935. https://doi.org/10.1128/iai.63.10.3927-3935.1995

    Article  Google Scholar 

  • von Seidlein L, Kim DR, Ali M, Lee H, Wang X, Thiem VD, Canh DG, Chaicumpa W, Agtini MD, Hossain A, Bhutta ZA, Mason C, Sethabutr O, Talukder K, Nair GB, Deen JL, Kotloff K, Clemens J (2006) A multicentre study of Shigella diarrhoea in six Asian countries: disease burden, clinical manifestations, and microbiology. PLoS Med 3(9):e353. https://doi.org/10.1371/journal.pmed.0030353

    Article  Google Scholar 

  • Waddington CS, Darton TC, Jones C, Haworth K, Peters A, John T, Thompson BA, Kerridge SA, Kingsley RA, Zhou L, Holt KE, Yu LM, Lockhart S, Farrar JJ, Sztein MB, Dougan G, Angus B, Levine MM, Pollard AJ (2014) An outpatient, ambulant-design, controlled human infection model using escalating doses of Salmonella typhi challenge delivered in sodium bicarbonate solution. Clin Infect Dis 58(9):1230–1240. https://doi.org/10.1093/cid/ciu078

    Article  Google Scholar 

  • Wahid R, Simon JK, Picking WL, Kotloff KL, Levine MM, Sztein MB (2013) Shigella antigen-specific B memory cells are associated with decreased disease severity in subjects challenged with wild-type Shigella flexneri 2a. Clin Immunol 148(1):35–43. https://doi.org/10.1016/j.clim.2013.03.009

    Article  Google Scholar 

  • Watson JL, Sanchez-Garrido J, Goddard PJ, Torraca V, Mostowy S, Shenoy AR, Clements A (2019) Shigella sonnei O-antigen inhibits internalization, vacuole escape, and inflammasome activation. mBio 10(6). https://doi.org/10.1128/mBio.02654-19

  • Wellcome grants awarded 1 Oct 2005–31 Mar 2021. https://wellcome.org/reports/grant-funding-data-2019-2020. Accessed 02 June 2021

  • Wellcome Human infection studies for vaccine development. https://wellcome.org/grant-funding/schemes/human-infection-studies-vaccine-development. Accessed 02 June 2021

  • Wellcome Trust and Boston Consulting Group (2021) Vaccines to tackle drug resistant infections. An evaluation of R&D opportunities

    Google Scholar 

  • Wenzel H, Kaminski RW, Clarkson KA, Maciel M Jr, Smith MA, Zhang W, Oaks EV (2017) Improving chances for successful clinical outcomes with better preclinical models. Vaccine 35(49 Pt A):6798–6802. https://doi.org/10.1016/j.vaccine.2017.08.030

  • WHO (2016) Human challenge trials for vaccine development: regulatory considerations. Expert Committee on Biological Standardization, 17–21 Oct 2016. World Health Organization, Geneva

    Google Scholar 

  • WHO (2017) Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. WHO/EMP/IAU/2017.12. World Health Organization, Geneva

    Google Scholar 

  • WHO (2017) WHO expert committee on biological standardization, sixty-seventh report. WHO technical report series, vol 1004. Geneva

    Google Scholar 

  • WHO (2020, draft) WHO preferred product characteristics for vaccines against Shigella. World Health Organization, Geneva

    Google Scholar 

  • Yang F, Yang J, Zhang X, Chen L, Jiang Y, Yan Y, Tang X, Wang J, Xiong Z, Dong J, Xue Y, Zhu Y, Xu X, Sun L, Chen S, Nie H, Peng J, Xu J, Wang Y, Yuan Z, Wen Y, Yao Z, Shen Y, Qiang B, Hou Y, Yu J, Jin Q (2005) Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33(19):6445–6458. https://doi.org/10.1093/nar/gki954

    Article  Google Scholar 

  • Zimmermann P, Curtis N (2019) Factors that influence the immune response to vaccination. Clin Microbiol Rev 32(2). https://doi.org/10.1128/CMR.00084-18

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura B. Martin .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clarkson, K.A. et al. (2021). Shigella-Controlled Human Infection Models: Current and Future Perspectives. In: Current Topics in Microbiology and Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2021_248

Download citation

  • DOI: https://doi.org/10.1007/82_2021_248

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics